	Construct a sinusoid with the given amplitude and period that goes through the given point. A) Amp: 4, period 4π, point $(0,0)$
B) Amp: 2.5, period $\frac{\pi}{5}$, point $(2,0)$	

$1 \mid \mathrm{Page}$

$$
\begin{aligned}
& \text { Amp }=A=\frac{\text { Max }- \text { Min }}{2} \\
& \text { Vertical }=(\mathrm{C})=\frac{\mathrm{Max}+\mathrm{Min}}{2} \\
& \text { period }=p \\
& \text { Horizontal Stretch/Sh rink } \\
& \quad \mathrm{B}=\frac{2 \pi}{\mathrm{p}}
\end{aligned}
$$

How to choose an appropriate model based on the behavior at some given time, T.
$y=A \cos B(t-T)+C$
if at time T the function attains a maximum value
$y=-A \cos B(t-T)+C$
if at time T the function attains a minimum value
$\mathrm{y}=\mathrm{A} \sin \mathrm{B}(\mathrm{t}-\mathrm{T})+\mathrm{C}$
if at time T the function halfway between a minimum and a maximum value
$\mathrm{y}=-\mathrm{A} \sin \mathrm{B}(\mathrm{t}-\mathrm{T})+\mathrm{C}$
if at time T the function halfway between a maximum and a minimum value
b) At what time on the $4^{\text {th }}$ of July did the first low tide occur.
c) What was the approximate depth of the water at 6:00 am and at 3:00 pm?
d) What was the first time on July $4^{\text {th }}$ when the water was 2.4 meters deep?

$4 \mid P$ age

5|Page

6|Page

